Abstract
Skeletal muscle protein turnover is a relatively slow metabolic process that is altered by various physiological stimuli such as feeding, fasting, and exercise. During exercise, catabolism of amino acids contributes very little to ATP turnover in working muscle. With regard to protein turnover, there are now consistent data from tracer studies in rodents and humans showing that global protein synthesis is blunted in working skeletal muscle. Whether there is altered skeletal muscle protein breakdown during exercise remains unclear. The blunting of protein synthesis is believed to be mediated by suppressed mRNA translation initiation and elongation steps involving, but not limited to, changes in eukaryotic initiation factor 4E binding protein 1 and eukaryotic elongation factor 2 phosphorylation (eEF2), respectively. Evidence is provided that upstream signaling to translation factors is mediated by signaling downstream of changes in intracellular Ca(2+) and energy turnover. In particular, a signaling cascade involving Ca(2+)/calmodulin-eEF2 kinase-eEF2 is implicated. The possible functional significance of altered protein turnover in working skeletal muscle during exercise is discussed. Further work with available and new techniques will undoubtedly reveal the functional significance and signaling mechanisms behind changes in skeletal muscle protein turnover during exercise.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Applied Physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.