Abstract
The light phase of photosynthesis is a key energy process in higher plants. Its purpose is to convert light energy into chemical one stored in ATP and NADPH molecules, which are then used to assimilate CO2 and in numerous metabolic processes. Maintaining optimal photosynthesis performance requires strict regulation of thylakoid membranes organization and rapid response to changing environmental conditions. The main factor affecting photosynthesis is light, which, if applied in excessive amounts, leads to a slowdown in the process. Therefore, plants have developed many protective mechanisms regulating the light reactions of photosynthesis and operating at the level of light energy absorption, electron transport, and the distribution and use of reducing power. These include, among others: (i) non-photochemical energy quenching regulating the amount of excitation energy delivered to the photosystems; (ii) ‘state transition’ process redistributing excitation energy between photosystems; (iii) redundant electron transport pathways responsible for maintaining redox balance in chloroplasts. All these mechanisms, in combination with antioxidant systems, are designed to maintain the function of the photosynthetic apparatus in adverse growth conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.