Abstract

p21, an inhibitor of cyclin-dependent kinase, functions as an oncogene or tumor suppressor depending on the context of a variety of extracellular and intracellular signals. The expression of p21 could be regulated at the transcriptional and/or post-translational levels. The p21 gene is well-known to be regulated in both p53-dependent and -independent manners. However, the detailed regulatory mechanisms of p21 messenger RNA and protein expression via statins remain unknown, and the possible application of statins as anticancer reagents remains to be controversial. Our data showed that the statins—fluvastatin and lovastatin—induced p21 expression as general histone deacetylase inhibitors in a p53-independent manner, which is mediated through various pathways, such as apoptosis, autophagy, cell cycle progression, and DNA damage, to be involved in the function of p21 in HeLa cells. The curative effect repositioning of digoxin, a cardiovascular medication, was combined with fluvastatin and lovastatin, and the results further implied that p21 induction is involved in a p53-dependent and p53-independent manner. Digoxin modified the effects of statins on ATF3, p21, p53, and cyclin D1 expression, while fluvastatin boosted its DNA damage effect and lovastatin impeded its DNA damage effect. Fluvastatin and lovastatin combined with digoxin further support the localization specificity of their interactivity with our subcellular localization data. This study will not only clarify the regulatory mechanisms of p21 induction by statins but will also shed light on the repurposing of widely cardiovascular medications for the treatment of cervical cancer.

Highlights

  • We aimed to examine the combination of statins with various histone deacetylase inhibitors (HDACIs) or digoxin in terms of their p21-induction mechanisms in human cervical carcinoma (HeLa) cells

  • Our data revealed that p21 induction in HeLa cells is more sensitive to lovastatin than fluvastatin for (Fig 1A and 1B), whereas the p53 levels were constant

  • The cell cycle profile obtained through flow cytometry analysis demonstrated that a higher dosage of statin increased the percentage of the subG1 population accompanied with a decrease in the percentages of the G1, S, and G2/M populations (Fig 1C)

Read more

Summary

Objectives

We aimed to examine the combination of statins with various HDACIs or digoxin in terms of their p21-induction mechanisms in human cervical carcinoma (HeLa) cells

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.