Abstract

Tuberoinfundibular corticotropin-releasing hormone (CRH) neurones are the principal regulators of the hypothalamic-pituitary-adrenal (HPA)-axis. Vasopressin is primarily a neurohypophysial hormone, produced in magnocellular neurones of the hypothalamic paraventricular and supraoptic nuclei, but parvocellular CRH neurones also coexpress vasopressin, which acts as a second 'releasing factor' for adrenocorticotropic hormone along with CRH. All stress inputs converge on these hypothalamic neuroendocrine neurones, and the input signals are integrated to determine the output secretion of CRH and vasopressin. Aminergic, cholinergic, GABAergic, glutamatergic and a number of peptidergic inputs have all been implicated in the regulation of CRH/vasopressin neurones. Glucocorticoids inhibit the HPA-axis activity by negative feedback. Interleukin-1 stimulates CRH and vasopressin gene expression, and is implicated in immune-neuroendocrine regulation. cAMP-response element-binding protein phosphorylation may mediate transcriptional activation of both CRH and vasopressin genes, but the roles of AP-1 and other transcription factors remain controversial. Expression profiles of the CRH and vasopressin genes are not uniform after stress exposure, and the vasopressin gene appears to be more sensitive to glucocorticoid suppression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.