Abstract

Tau is a microtubule (MT)-associated protein that is thought to be localized to the axon. However, its precise localization in developing neurons and mechanisms for the axonal localization have not been fully addressed. In this study, we found that the axonal localization of tau in cultured rat hippocampal neurons mainly occur during early neuronal development. Interestingly, transient expression of human tau in very immature neurons, but not in mature neurons, mimicked the developmental localization of endogenous tau to the axon. We therefore were able to establish an experimental model, in which exogenously expressed tau can be properly localized to the axon. Using this model, we obtained a surprising finding that the axonal localization of tau did not require stable MT binding. Tau lacking the MT-binding domain (MTBD) exhibited high diffusivity but localized properly to the axon. In contrast, a dephosphorylation-mimetic mutant of the proline-rich region 2 showed reinforced MT binding and mislocalization. Our results suggest that tight binding to MTs prevents tau from entering the axon and results in mislocalization in the soma and dendrites when expressed in mature neurons. This study therefore provides a novel mechanism independent of MTBD for the axonal localization of tau.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.