Abstract
Toona sinensis (TS), a kind of arbor, widely distributes nowadays in Asia. The leaves of TS have been used as an effective nutritious food in Chinese society for a long time. It was reported that Toona sinensis can induce apoptosis of cancer cells, reduce plasma glucose in diabetic rats, and improve lipolysis of differentiated 3T3-L1 adipocyte and its uptake of glucose. It has also been shown that TS may increase dynamic activity of human sperm. Thus, we are interested to investigate whether Toona sinensis has any effect on mouse Leydig cell testosterone production, which correlates to sperm activity. Primary mouse Leydig cells were purified to conduct the in vitro experiments. Different concentrations of crude Toona sinensis were added to primary mouse Leydig cells and the testosterone production was determined. The results showed that crude TS significantly inhibited both basal and human chorionic gonadotropin (hCG)-stimulated testosterone productions in dose dependent manner, respectively ( P<0.05). Crude TS also reduced the forskolin- and dibutyryl-cAMP (dbcAMP)-stimulated testosterone production ( P<0.05), which indicated that crude TS might affect protein kinase A (PKA) signal transduction pathway at the site after the formation of cyclic AMP. Moreover, TS inhibited Leydig cell steroidogenesis by suppressing the activity of steroidogenic enzymes including P450 side chain cleavage enzyme, 3β-hydroxysteroid dehydrogenase, 17α-hydroxylase, 20α-hydroxylase and 17β-hydroxysteroid dehydrogenase ( P<0.05). In summary, these results suggested that TS inhibited steroidogenesis by suppressing the cAMP-PKA signaling pathway and the activities of steroidogenic enzymes in normal mouse Leydig cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.