Abstract

Tenuazonic acid (TeA) is a mycotoxin produced by the rice blast fungus Pyricularia oryzae and some plant pathogenic fungi. We previously demonstrated that TeA is biosynthesized in P. oryzae by TeA synthetase 1 (TAS1) and that its production is induced by osmo-sensory MAPK-encoding gene (OSM1) deletion or the addition of 1% DMSO to cultures; however, the regulatory mechanisms of TeA production were unknown. Here, we identify a Zn(II)2-Cys6-type transcription factor in the upstream region of TAS1, which is encoded by TAS2 and regulates TeA production. We also find PoLAE1, which is a homologue of LaeA, a regulator of fungal secondary metabolism. Analysis of PoLAE1 deletion and overexpression strains indicate that PoLAE1 drives TeA production. We also demonstrate that two TeA-inducing signals, 1% DMSO addition and OSM1 deletion, were transmitted through PoLAE1. Our results indicate that TeA production is regulated by two specific regulators, TAS2 and PoLAE1, in P. oryzae.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call