Abstract

Hypertension (HT) is among the most common cardiovascular diseases in the world and is an important risk factor for stroke, myocardial infarction, heart failure, and kidney failure. Recent studies have demonstrated that activation of the immune system plays an important role in the occurrence and maintenance of HT. Thus, this research aimed to determine the immune-related biomarkers in HT. In this study, RNA sequencing data of the gene expression profiling datasets (GSE74144) were downloaded from the Gene Expression Omnibus database. Differentially expressed genes between HT and normal samples were identified using the software limma. The immune-related genes associated with HT were screened. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed using the program "clusterProfiler" of the R package. The protein-protein interaction network of these differentially expressed immune-related genes (DEIRGs) was constructed based on the information from the STRING database. Finally, the TF-hub and miRNA-hub gene regulatory networks were predicted and constructed using the miRNet software. Fifty-nine DEIRGs were observed in HT. The Gene Ontology analysis indicated that DEIRGs were mainly enriched in the positive regulation of cytosolic calcium ions, peptide hormones, protein kinase B signaling, and lymphocyte differentiation. The Kyoto Encyclopedia of Genes and Genomes enrichment analysis indicated that these DEIRGs were significantly involved in the intestinal immune network for IgA production, autoimmune thyroid disease, JAK-STAT signaling pathway, hepatocellular carcinoma, and Kaposi sarcoma-associated herpesvirus infection, among others. From the protein-protein interaction network, 5 hub genes (insulin-like growth factor 2, cytokine-inducible Src homology 2-containing protein, suppressor of cytokine signaling 1, cyclin-dependent kinase inhibitor 2A, and epidermal growth factor receptor) were identified. The receiver operating characteristic curve analysis was performed in GSE74144, and all genes with an area under the curve of > 0.7 were identified as the diagnostic genes. Moreover, miRNA-mRNA and TF-mRNA regulatory networks were constructed. Our study identified 5 immune-related hub genes in patients with HT and demonstrated that they were potential diagnostic biomarkers for HT.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call