Abstract

In Saccharomyces cerevisiae, unsaturated fatty acids are formed from saturated acyl-CoA precursors by Ole1p, a delta-9 fatty acid desaturase. OLE1 mRNA levels are differentially regulated by the addition of saturated or unsaturated fatty acids to the growth medium. One component of this regulation system involves the control of OLE1 transcription. Saturated fatty acids induce a 1.6-fold increase in transcription activity, whereas a large family of unsaturated fatty acids repress OLE1 transcription as much as 60-fold. A deletion analysis of OLE1 promoter::lacZ fusion reporter genes identified a 111-base pair (bp) fatty acid-regulated (FAR) region approximately 580 bp upstream of the start codon that is essential for transcription activation and unsaturated fatty acid repression. Deletion of an 88-bp sequence within that region resulted in a complete loss in transcription activation and unsaturated fatty acid regulation. The 111-bp FAR element strongly activates transcription and confers unsaturated fatty acid regulation on a heterologous CYC1 promoter test plasmid. Essential elements required for unsaturated fatty acid repression of OLE1 were found in the 5 and 3 region of the 111-bp sequence. The FAR element-mediated activation and fatty acid repression of transcription was found to be closely tied to fatty acyl-CoA metabolism. Two fatty acid activation genes, FAA1 and FAA4, were found to be essential for unsaturated fatty acid repression of OLE1 through the FAR sequences. Disruption of either gene results in reduced levels of unsaturated fatty acid repression; disruption of both genes completely blocks the regulatory response. Acyl-CoA binding protein (ACBP) plays a role in determining the level of FAR element activated transcription. Disruption of the ACBP gene causes a >5-fold activation of OLE1 transcription and a similar increase in OLE1 mRNA levels. Unsaturated fatty acid repression of OLE1 transcription, however, is not affected by the disrupted ACBP gene. These studies show that promoter elements responsible for unsaturated fatty acid-mediated transcription repression are tightly linked to OLE1 activation sequences and that OLE1 transcription levels are closely tied to acyl-CoA metabolism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.