Abstract

Dental implant material has an impact on adhesion and spreading of oral mucosal cells on its surface. Platelet-rich fibrin (PRF), a second-generation platelet concentrate, can enhance cell proliferation and adhesion. The aim was to examine the regulatory effects of PRF and titanium surfaces on cellular adhesion, spread, and cytokine expressions of gingival keratinocytes. Human gingival keratinocytes were cultured on titanium grade 4, titanium grade 5 (Ti5), and HA discs at 37°C in a CO2 incubator for 6h and 24h, using either elutes of titanium-PRF (T-PRF) or leukocyte and platelet-rich fibrin (L-PRF), or mammalian cell culture medium as growth media. Cell numbers were determined using a Cell Titer 96 assay. Interleukin (IL)-1β, IL-1Ra, IL-8, monocyte chemoattractant protein (MCP)-1, and vascular endothelial growth factor (VEGF) expression levels were measured using the Luminex® xMAP™ technique, and cell adhesion and spread by scanning electron microscopy. Epithelial cell adhesion and spread was most prominent to Ti5 surfaces. L-PRF stimulated cell adhesion to HA surface. Both T-PRF and L-PRF activated the expressions of IL-1 β, IL-8, IL-1Ra, MCP-1, and VEGF, T-PRF being the strongest activator. Titanium surface type has a regulatory role in epithelial cell adhesion and spread, while PRF type determines the cytokine response.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.