Abstract

We have reported that nicotine has a neurotrophic action on peripheral adrenergic nerves in vivo, which is mediated by α7 nicotinic acetylcholine receptors (nAChRs). To clarify the possible mechanisms, the present study further investigated the effect of nicotine on neurite outgrowth in tyrosine hydroxylase (TH)-positive superior cervical ganglia (SCG) cells isolated from neonatal rats in vitro. Nicotine at low concentrations (0.01–0.3 mM) increased the number of neurite outgrowths in TH-immunopositive SCG cells, while high concentrations of nicotine (1–10 mM) gradually reduced it, and only 10 mM nicotine was markedly inhibited compared to the control. A 100 μM of nicotine-induced increase in neurite numbers depended on the exposure time and was inhibited by treatment with the nAChR antagonist hexamethonium (Hex) and α7 nAChR antagonist α-bungarotoxin (α-Bgtx). The nicotine (10 mM)-induced a significant decrease in neurite outgrowth in SCG, which was perfectly canceled by Hex to the control level but not by α-Bgtx. These results suggest that nicotine has a regulatory neurotrophic action mediated by both α7 nAChR and other subtypes in TH-positive SCG cells of rats.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.