Abstract

These studies were undertaken to investigate the mechanisms involved in the regulation of hepatic low density lipoprotein (LDL) transport by n-3 fatty acids in the hamster and rat. Animals were fed n-3 or n-6 fatty acids with a cholesterol-free, very-low-fat semisynthetic diet, or with a diet enriched with cholesterol and saturated fat. Although the enrichment of liver lipids with dietary n-3 fatty acids was similar in hamsters and rats, the effect of n-3 fatty acids on hepatic LDL transport differed in the two species. In the hamster, n-3 fatty acids had no effect on hepatic receptor-dependent LDL uptake in animals fed a cholesterol-free, very-low-fat diet and suppressed receptor-dependent transport in animals fed a diet enriched with cholesterol and saturated triglyceride. In hamsters fed n-3 fatty acids, changes in receptor-dependent LDL transport were accompanied by parallel changes in LDL receptor mRNA, indicating regulation of the receptor at the pretranslational level. In the rat, on the other hand, dietary n-3 fatty acids enhanced hepatic receptor-dependent LDL uptake by nearly twofold regardless of the background diet; however, hepatic LDL receptor protein and mRNA were unchanged. Dietary n-3 fatty acids did not enhance hepatic chylomicron remnant clearance in the rat. These studies confirm marked species differences in response to n-3 fatty acids and suggest that n-3 fatty acids accelerate hepatic receptor-dependent LDL transport in the rat by altering the distribution or recycling of LDL receptors or via effects on a different receptor pathway.

Highlights

  • These studies were undertaken to investigate the mechanisms involved in the regulation of hepatic low density lipoprotein (LDL) transport by n-3 fatty acids in the hamster and rat

  • The cholesterol-lowering effect of n-3 fatty acids was greater in the rat with reductions in plasma cholesterol of 44% and 53% in animals fed the n-3 fatty acid concentrate at the 12% and 24% levels, respectively

  • Plasma total and LDL-cholesterol concentrations consistently fall in humans and various animal species when saturated triglyceride is replaced by vegetable oil rich in n-6 polyunsaturated or n-9 monounsaturated fatty acids [33,34,35]

Read more

Summary

Introduction

These studies were undertaken to investigate the mechanisms involved in the regulation of hepatic low density lipoprotein (LDL) transport by n-3 fatty acids in the hamster and rat. Animals were fed n-3 or n-6 fatty acids with a cholesterol-free, very-low-fat semisynthetic diet, or with a diet enriched with cholesterol and saturated fat. The enrichment of liver lipids with dietary n-3 fatty acids was similar in hamsters and rats, the effect of n-3 fatty acids on hepatic LDL transport differed in the two species. N-3 fatty acids had no effect on hepatic receptor-dependent LDL uptake in animals fed a cholesterol-free, very-low-fat diet and suppressed receptor-dependent transport in animals fed a diet enriched with cholesterol and saturated triglyceride. In hamsters fed n-3 fatty acids, changes in receptor-dependent LDL transport were accompanied by parallel changes in LDL receptor mRNA, indicating regulation of the receptor at the pretranslational level.

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.