Abstract

Hypoxia-inducible factor-1α (HIF-1α) and heme oxygenase-1 (HO-1) are important transcription regulators in hypoxic cells and for maintaining cellular homeostasis, but it is unclear whether they participate in hypoxia-induced excessive proliferation of yak pulmonary artery smooth muscle cells (PASMCs). In this study, we identified distribution of HIF-1α and HO-1 in yak lungs. Immunohistochemistry and immunofluorescence results revealed that both HIF-1α and HO-1 were mainly concentrated in the medial layer of small pulmonary arteries. Furthermore, under induced-hypoxic conditions, we investigated HIF-1α and HO-1 protein expression and studied their potential involvement in yak PASMCs proliferation and apoptosis. Western blot results also showed that both factors significantly increased in age-dependent manner and upregulated in hypoxic PASMCs (which exhibited obvious proliferation and anti-apoptosis phenomena). HIF-1α up-regulation by DMOG increased the proliferation and anti-apoptosis of PASMCs, while HIF-1α down-regulation by LW6 decreased proliferation and promoted apoptosis. More so, treatment with ZnPP under hypoxic conditions down-regulated HO-1 expression, stimulated proliferation, and resisted apoptosis in yak PASMCs. Taken together, our study demonstrated that both HIF-1α and HO-1 participated in PASMCs proliferation and apoptosis, suggesting that HO-1 is important for inhibition of yak PASMCs proliferation while HIF-1α promoted hypoxia-induced yak PASMCs proliferation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.