Abstract

Molecular breeding accelerates animal breeding and improves efficiency by utilizing genetic mutations. Structural variations (SVs), a significant source of genetic mutations, have a greater impact on phenotypic variation than SNPs. Understanding SV functional mechanisms and obtaining precise information are crucial for molecular breeding. In this study, association analysis revealed significant correlations between 198-bp SVs in the GSTA2 promoter region and abdominal fat weight, intramuscular fat content, and subcutaneous fat thickness in chickens. High expression of GSTA2 in adipose tissue was positively correlated with the abdominal fat percentage, and different genotypes of GSTA2 exhibited varied expression patterns in the liver. The 198-bp SVs regulate GSTA2 expression by binding to different transcription factors. Overexpression of GSTA2 promoted preadipocyte proliferation and differentiation, while interference had the opposite effect. Mechanistically, the 198-bp fragment contains binding sites for transcription factors such as C/EBPα that regulate GSTA2 expression and fat synthesis. These SVs are significantly associated with chicken fat traits, positively influencing preadipocyte development by regulating cell proliferation and differentiation. Our work provides compelling evidence for the use of 198-bp SVs in the GSTA2 promoter region as molecular markers for poultry breeding and offers new insights into the pivotal role of the GSTA2 gene in fat generation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.