Abstract

ObjectiveThis experiment will explore the effect of LncRNA DRAIC/miR-149-5p/NFIB molecular network on esophageal cancer (EC) cells' biological behavior and autophagy. MethodsWe bought human EC cells and normal esophageal epithelial cells HEEC. DRAIC, miR-149-5p and NFIB protein expression were tested. The low expression plasmid of DRAIC and empty vector of DRAIC, miR-149-5p miR-mimics, miR-149-5p inhibitors and negative control groups, NFIB high expression plasmid, NFIB low expression plasmid and empty vector were transfected into EC cells (Eca-109 and EC9706) to detect changes in cell biological behavior and autophagy protein expression. The targeted relationship between DRAIC/miR-149-5p/NFIB was verified through dual-luciferase report and pull-down experiment. ResultsDRAIC and NFIB showed high expression in EC cells, while miR-149-5p showed low expression. Down-regulating DRAIC, NFIB and over-expressing miR-149-5p can inhibit EC cells' proliferation and invasion, and improve apoptosis and autophagy. Dual-luciferase report and pull-down experiment confirmed that DRAIC targeted miR-149-5p regulation, and down-regulating DRAIC could reverse miR-149-5p inhibitor's effect on the biological behavior of EC cells. However, dual-luciferase report revealed that miR-149-5p directly targeted NFIB, and miR-149-5p inhibitor could weaken the effect of down-regulating NFIB on apoptosis and autophagy of EC cells. Moreover, DRAIC has an effect on the autophagy of EC cells through miR-149-5p/NFIB. ConclusionLncRNA DRAIC is relevant to cell biology and autophagy of EC. In the future, DRAIC may be developed as a key gene for EC diagnosis and treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call