Abstract

Lactulose is a common component in foods. However, the effect of lactulose on intestinal flora and overall metabolic levels remains unclear. Therefore, this study aims to explore the regulative role of lactulose on intestinal flora and serum metabolites via in vitro simulated colonic fermentation model and in vivo colitis mouse model. The results showed that lactulose significantly enriched beneficial bacteria including Dubosiella and Bifidobacterium, and reduced pathogenic bacteria such as Fusobacterium. Moreover, lactulose significantly inhibited dextran sodium sulfate-induced body weight loss, colon shortening, colonic inflammatory infiltration, and pro-inflammatory cytokines IL-6, TNF-α, IL-17, and IL-1β. Lactulose significantly affected serum metabolome in colitis mice and total 24 metabolites representing a high inter-group difference were obtained. Correlation analysis revealed that the changes in serum metabolites were closely associated with the role of intestinal flora, and thus affected phenotypic indicators. Our study provides a reference for nutritional characteristics and application scenarios of dietary lactulose.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.