Abstract

Crosstalk among different hormone signaling pathways play an important role in modulating plant response to both biotic and abiotic stress. Hormone activity is controlled by its bio-availability, which is again influenced by its biosynthesis. Thus, independent hormone biosynthesis pathways must be regulated and co-ordinated to mount an integrated response. One of the possibilities is to use cis-regulatory elements to orchestrate expression of hormone biosynthesis genes. Analysis of CREs, associated with differentially expressed hormone biosynthesis related genes in rice leaf under Magnaporthe oryzae attack and drought stress enabled us to obtain insights about cross-talk among hormone biosynthesis pathways at the transcriptional level. We identified some master transcription regulators that co-ordinate different hormone biosynthesis pathways under stress. We found that Abscisic acid and Brassinosteroid regulate Cytokinin conjugation; conversely Brassinosteroid biosynthesis is affected by both Abscisic acid and Cytokinin. Jasmonic acid and Ethylene biosynthesis may be modulated by Abscisic acid through DREB transcription factors. Jasmonic acid or Salicylic acid biosynthesis pathways are co-regulated but they are unlikely to influence each others production directly. Thus, multiple hormones may modulate hormone biosynthesis pathways through a complex regulatory network, where biosynthesis of one hormone is affected by several other contributing hormones.

Highlights

  • Plants being sessile creatures are forced to adapt to various adverse conditions to successfully complete their life-cycles

  • Our investigations into cisregulatory elements (CRE)-mediated regulation of differentially up-regulated hormone biosynthesis associated loci under blast infection and drought stress revealed that hormone biosynthesis pathways are subjected to hormone cross-talk

  • Plant response to blast and drought is associated with transcriptional modulation of biosynthesis genes of several hormones and these hormones modulate bio-availability of each other through a complex regulatory network

Read more

Summary

Introduction

Plants being sessile creatures are forced to adapt to various adverse conditions to successfully complete their life-cycles. A repertoire of complex signaling systems was acquired by plants to respond to physiological and environmental cues. Phytohormones are one of the key mediators that afford plants the ability to rapidly respond to external cues by adjusting their metabolism. Previous research efforts have revealed importance of individual hormones in plant development and stress response (Creelman and Mullet, 1997; Yamaguchi, 2008; Zhao, 2010). Biological activity of any hormone depends on its availability which is controlled by level of its synthesis, transport and conjugation or degradation as well as efficiency of signal perception and transduction.

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call