Abstract

The γ-proteobacterium Xanthomonas campestris pv. campestris (Xcc) B100 synthesizes the exopolysaccharide xanthan, a commercially relevant thickening agent produced commonly by industrial scale fermentation. This work was inspired by the observation that methionine is an inhibitor of xanthan formation in growth experiments. Therefore, the global effects of methionine supplementation were characterized through cultivation experiments, genome-wide microarray hybridizations and qRT-PCR. Specific pull down of DNA-binding proteins by using the intergenic regions upstream of xanA, gumB and gumD led to the identification of six transcriptional regulators, among them the LysR-family transcriptional regulator CysB. An insertion mutant of this gene was analyzed by growth experiments, microarray experiments and qRT-PCR. Based on our experimental data, we developed a model that describes the methionine-dependent co-regulation of xanthan and sulfur-containing compounds in Xanthomonas. These data substantially contribute to better understand the impact of methionine as a compound in xanthan production media used in industrial fermentations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.