Abstract
BackgroundHighly virulent enterohemorrhagic Escherichia coli O157:H7 strains possess three sodC genes encoding for periplasmic Cu, Zn superoxide dismutases: sodC, which is identical to the gene present in non-pathogenic E. coli strains, and sodC-F1 and sodC-F2, two nearly identical genes located within lambdoid prophage sequences. The significance of this apparent sodC redundancy in E. coli O157:H7 has not yet been investigated.ResultsWe report that strains deleted of one or more sodC genes are less resistant than the wild type strain to a challenge with hydrogen peroxide, thus confirming their involvement in the bacterial antioxidant apparatus. To understand if the different sodC genes have truly overlapping functions, we have carried out a comparison of the functional, structural and regulatory properties of the various E. coli O157:H7 SodC enzymes. We have found that the chromosomal and prophagic sodC genes are differentially regulated in vitro. sodC is exclusively expressed in aerobic cultures grown to the stationary phase. In contrast, sodC-F1 and sodC-F2 are expressed also in the logarithmic phase and in anaerobic cultures. Moreover, the abundance of SodC-F1/SodC-F2 increases with respect to that of SodC in bacteria recovered from infected Caco-2 cells, suggesting higher expression/stability of SodC-F1/SodC-F2 in intracellular environments. This observation correlates with the properties of the proteins. In fact, monomeric SodC and dimeric SodC-F1/SodC-F2 are characterized by sharp differences in catalytic activity, metal affinity, protease resistance and stability.ConclusionOur data show that the chromosomal and bacteriophage-associated E. coli O157:H7 sodC genes have different regulatory properties and encode for proteins with distinct structural/functional features, suggesting that they likely play distinctive roles in bacterial protection from reactive oxygen species. In particular, dimeric SodC-F1 and SodC-F2 possess physico-chemical properties which make these enzymes more suitable than SodC to resist the harsh environmental conditions which are encountered by bacteria within the infected host.
Highlights
Virulent enterohemorrhagic Escherichia coli O157:H7 strains possess three sodC genes encoding for periplasmic Cu, Zn superoxide dismutases: sodC, which is identical to the gene present in non-pathogenic E. coli strains, and same procedure was employed to construct RG-F108 (sodC-F1) and sodC-F2, two nearly identical genes located within lambdoid prophage sequences
The complete genome sequencing of the two E. coli O157:H7 epidemic strains EDL 933 [3] and Sakai [4] has revealed, in addition to the sodC gene typical of all E. coli strains, the presence of two sodC genes located in lambdoid prophage sequences
We have found that the nucleotide sequence of the DNA fragments amplified with the primers 550F1b and 500STOP1R and with the primers 550F2b and 500STOP2R (Table 2) on the genomic DNA from E. coli ED597 show a perfect identity with the sodC-F1 and sodCF2 sequences of the EDL 933 strain, indicating a strict conservation of the sodC genes in these two bacterial strains
Summary
Virulent enterohemorrhagic Escherichia coli O157:H7 strains possess three sodC genes encoding for periplasmic Cu, Zn superoxide dismutases: sodC, which is identical to the gene present in non-pathogenic E. coli strains, and sodC-F1 and sodC-F2, two nearly identical genes located within lambdoid prophage sequences. The significance of this apparent sodC redundancy in E. coli O157:H7 has not yet been investigated. The sequencing of E. coli O157:H7 genomes [3,4] has revealed that several potential virulence-associated genes are carried by mobile genetic elements, such as plasmids or prophages, or are localized within pathogenicity islands. This organism shares 4.1 Mb of DNA with E. coli K12, it has 1.34 Mb of DNA distributed among 177 DNA segments, termed O islands, that are absent in E. coli K12 [3]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.