Abstract
Regulator functions applied to two- and three-nucleon forces are a necessary ingredient in many-body calculations based on chiral effective field theory interactions. These interactions have been developed recently with a variety of different cutoff forms, including regulating both the momentum transfer (local) and the relative momentum (nonlocal). While in principle any regulator that suppresses high momentum modes can be employed, in practice artifacts are inevitable in current power counting schemes. Artifacts from particular regulators may cause significant distortions of the physics or may affect many-body convergence rates, so understanding their nature is important. Here we characterize the differences between cutoff effects using uniform matter at Hartree-Fock and second-order in the interaction as a testbed. This provides a clean laboratory to isolate phase-space effects of various regulators on both two- and three-nucleon interactions. We test the normal-ordering approximation for three-nucleon forces in nuclear matter and find that the relative size of the residual 3N contributions is sensitive to the employed regularization scheme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.