Abstract

Pl-nectin is a glycoprotein first discovered in the extracellular matrix (ECM) of Paracentrotus lividus sea urchin embryo, apically located on ectoderm and endoderm cells. The molecule has been described as functioning as an adhesive substrate for embryonic cells and its contact to ectoderm cells is essential for correct skeletogenesis. The present study was undertaken to elucidate the biochemical characteristics of Pl-nectin and to extend knowledge on its in vivo biological function. Here it is shown that the binding of mesenchyme blastula cells to Pl-nectin-coated substrates was calcium dependent, and reached its optimum at 10 mM Ca2+. Perturbation studies using monoclonal antibody (McAb) to Pl-nectin, which prevent ectoderm cell-Pl-nectin contact, show that dorsoventral axis formation and ectoderm differentiation were retarded. At later stages, embryos recovered and, even if growth and patterning of the skeleton was greatly affected, the establishment of dorsoventral asymmetry was reached. Similarly, the expression of specific ectoderm and endoderm territorial markers was achieved, although occurring with some delay. Endoderm differentiation and patterning was not obviously affected. These results suggest that both endoderm and ectoderm cells have regulative capacities and differentiation of territories is restored after a lag period. On the contrary, failure of inductive differentiation of the skeleton cannot be rescued, even though the ectoderm has recovered.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call