Abstract

A solid oxide fuel cell combined cooling, heating, and power system integrating biomass gasification is proposed. The hybrid system consists of the biomass gasifier, solid oxide fuel cell-gas turbine, and waste heat recovery device. The system can be divided into different configurations by adjusting the valve opening to change the waste heat mode. The thermodynamic model is established and validated; the system evaluation indicators and the thermodynamic, economic and environmental performance are researched under design conditions. The influences of several crucial parameters on syngas composition and system performance under the different configurations are investigated. This paper also evaluates the scope of system regulation and energy output to meet the energy demand side. The analysis results indicate that system power efficiency is 58.92% at the preferred configuration, and the system energy and exergy efficiency can attain 86.70% and 50.45%. The system total cost rate and the CO2 emission rate are relatively lower, at 19.6$/h and 0.4722kg/kWh. By implementing different configuration strategies, the system exergy efficiency is between 46.55% and 50.45%. The system heating to power ratio and cooling to power ratio can vary from 0 to 0.58 and 0 to 0.77.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call