Abstract
Benzo[a]pyrene (B[a]P) is a genotoxic polycyclic aromatic hydrocarbon that is metabolized by cytochrome P450 family 1 enzymes (CYP 1s) and can bind to DNA to form DNA adducts, leading to DNA damage and increased colorectal cancer risk. Previous studies have shown polymethoxyflavones to have a high potential for anticancer effects by regulating CYP 1s, especially nobiletin (NBT) and 5-demethylnobiletin (5-DMNB). However, the effects of NBT and 5-DMNB on B[a]P metabolism remain unclear. Therefore, this study aimed to clarify the effects of NBT and 5-DMNB on B[a]P-induced DNA damage in vitro and in vivo. In NCM460 cells, 5-DMNB and NBT appeared to reduce the metabolic conversion of B[a]P by regulating the aryl hydrocarbon receptor (AhR)/CYP 1s signaling pathway. This process protected NCM460 cells from B[a]P's cytotoxic effects by decreasing DNA damage and suppressing B[a]P diol-epoxide-DNA adduct formation. In BALB/c mice, 5-DMNB and NBT also protected against B[a]P-induced DNA damage. Altogether, these findings indicate that 5-DMNB and NBT attenuate B[a]P-induced DNA damage by modulating biotransformation, highlighting their chemopreventive potential against B[a]P-induced carcinogenesis. Therefore, 5-DMNB and NBT are promising agents for colorectal cancer chemoprevention in the future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.