Abstract

Our objective was to define the signaling mechanisms by which mitogens such as insulin-like growth factor-I (IGF-I) regulate vascular smooth muscle cell (VSMC) apoptosis. We confirmed that IGF-I inhibits serum withdrawal-induced apoptosis of cultured VSMCs in a dose-dependent and time-dependent fashion. To test the hypothesis that the phosphatidylinositol (PI) 3-kinase signaling pathway regulates VSMC survival, we examined the relationship between PI 3-kinase activity and cell fate. PI 3-kinase was elevated in viable VSMCs maintained in serum-containing medium, declined significantly in response to serum withdrawal, and increased in response to IGF-I-induced survival. Moreover, blockade of PI 3-kinase with 2 structurally dissimilar inhibitors (wortmannin or LY294002) abolished the capacity of IGF-I to maintain VSMC viability. Similarly, transient transfection of a dominant-negative Deltap85 PI 3-kinase mutant construct abrogated the capacity of IGF-I to prevent VSMC death. Thus, PI 3-kinase is a critical antiapoptotic signal in VSMCs. To define the distal element of the antiapoptotic cascade, we tested the hypothesis that IGF-I inhibits the influence of the proapoptotic gene Bad. Indeed, IGF-I stimulates increased expression of the inactive, phosphorylated form of Bad by a PI 3-kinase-dependent pathway. Moreover, the proapoptotic effect of Bad was attenuated by the stimulation of IGF-I. Thus, growth factors appear to prevent VSMC death by activating signal transduction pathways linked to apoptotic regulatory genes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call