Abstract

Activities of branched-chain amino acid (BCAA) aminotransferase (BCAT) and alpha-keto acid dehydrogenase (BCKD) were assayed in mitochondria isolated from kidneys of rats. Rates of transamination of valine and oxidation of keto acids alpha-ketoisocaproate (KIC) or alpha-ketoisovalerate (KIV) were estimated using radioactive tracers of the appropriate substrate from amounts of 14C-labeled products formed (14CO2 or [1-14C]-keto acid). Because of the high mitochondrial BCAT activity, an amino acceptor for BCAT, alpha-ketoglutarate (alpha-KG) or KIC, was added to the assay medium when valine was the substrate. Rates of valine transamination and subsequent oxidation of the KIV formed were determined with 0.5 mM alpha-KG as the amino acceptor; these rates were 5- to 50-fold those without added alpha-KG. Rates of CO2 evolution from valine also increased when KIC (0.01-0.10 mM) was present; however, with KIC concentrations above 0.2 mM, rates of CO2 evolution from valine declined although rates of transamination continued to rise. When 0.05 mM KIC was added to the assay medium, oxidation of KIC was suppressed by inclusion of valine or glutamate in the medium. When valine was present KIC was not oxidized preferentially, presumably because it was also serving as an amino acceptor for BCAT. These results indicate that as the supply of amino acceptor, alpha-KG or KIC, is increased in mitochondria not only is the rate of valine transamination stimulated but also the rate of oxidation of the KIV formed from valine.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call