Abstract

The deubiquitylase (DUB) USP37 is a component of the ubiquitin system and controls cell proliferation by regulating the stability of the cyclin-dependent kinase inhibitor 1B, (CDKN1B/p27Kip1). The expression of USP37 is downregulated in human medulloblastoma tumor specimens. In the current study, we show that USP37 prevents medulloblastoma growth in mouse orthotopic models, suggesting that it has tumor-suppressive properties in this neural cancer. Here, we also report on the mechanism underlying USP37 loss in medulloblastoma. Previously, we observed that the expression of USP37 is transcriptionally repressed by the RE1 silencing transcription factor (REST), which requires chromatin remodeling factors for its activity. Genetic and pharmacologic approaches were employed to identify a specific role for G9a, a histone methyltransferase (HMT), in promoting methylation of histone H3 lysine-9 (H3K9) mono- and dimethylation, and surprisingly trimethylation, at the USP37 promoter to repress its gene expression. G9a inhibition also blocked the tumorigenic potential of medulloblastoma cells in vivo Using isogenic low- and high-REST medulloblastoma cells, we further showed a REST-dependent elevation in G9a activity, which further increased mono- and trimethylation of histone H3K9, accompanied by downregulation of USP37 expression. Together, these findings reveal a role for REST-associated G9a and histone H3K9 methylation in the repression of USP37 expression in medulloblastoma.Implications: Reactivation of USP37 by G9a inhibition has the potential for therapeutic applications in REST-expressing medulloblastomas. Mol Cancer Res; 15(8); 1073-84. ©2017 AACR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.