Abstract
The regulation of uncoupling protein 2 and uncoupling protein 3 gene expression in skeletal muscle has recently been the focus of intense interest. Our aim was to determine expression of uncoupling protein 2 and 3 in skeletal muscle from tetraplegic subjects, a condition representing profound muscle inactivity. Thereafter we determined whether exercise training would modify expression of these genes in skeletal muscle. mRNA expression of uncoupling protein 2 and 3 was determined using quantitative reverse transcription-polymerase chain-reaction. Expression of uncoupling protein 2 and 3 mRNA was increased in skeletal muscle from tetraplegic compared with able-bodied subjects (3.7-fold p < 0.01 and 4.1-fold, p < 0.05, respectively). A subgroup of four tetraplegic subjects underwent an 8-week exercise programme consisting of electrically-stimulated leg cycling (ESLC, 7 ESLC sessions/week). This training protocol leads to increases in whole body insulin-stimulated glucose uptake and expression of genes involved in glucose metabolism in skeletal muscle from tetraplegic subjects. After ESLC training, uncoupling protein 2 expression was reduced by 62% and was similar to that in able-bodied people. Similarly, ESLC training was associated with a reduction of uncoupling protein 3 expression in skeletal muscle from three of four tetraplegic subjects, however, post-exercise levels remained increased compared with able-bodied subjects. Tetraplegia is associated with increased mRNA expression of uncoupling protein 2 and 3 in skeletal muscle. Exercise training leads to normalisation of uncoupling protein 2 expression in tetraplegic subjects. Muscle disuse and physical activity appear to be powerful regulators of uncoupling protein 2 and 3 expression in human skeletal muscle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.