Abstract
An early feature of diabetic nephropathy is the alteration of the glomerular basement membrane (GBM), which may result in microalbuminuria, subsequent macroproteinuria, and eventual chronic renal failure. Although type IV collagen is the main component of thickened GBM in diabetic nephropathy, cellular metabolism of each α chains of type IV collagen has not been well studied. To investigate the regulation of α(IV) chains in diabetic conditions, we examined whether glucose and advanced glycosylation endproduct (AGE) regulate the metabolism of each α(IV) chains in the diabetic tissue and glomerular epithelial cells (GEpC). Glomerular collagen α3(IV) and α5(IV) chains protein were higher and more intense in immunofluorescence staining according to diabetic durations compared to controls. In vitro, mainly high glucose and partly AGE usually increased total collagen protein of GEpC by [3H]-proline incorporation assay and each α(IV) chain proteins including α1(IV), α3(IV), and α5(IV) in time-dependent and subchain-specific manners. However, the changes of each α(IV) chains mRNA expression was not well correlated to the those of each chain proteins. The present findings suggest that the metabolism of individual α(IV) chains of GBM is differentially regulated in diabetic conditions and those changes might be induced not only by transcriptional level but also by post-translational modifications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.