Abstract

Aberrant transcriptional regulation of transforming growth factor alpha (TGF alpha) appears to be an important contributor to the malignant phenotype and the growth factor independence with which malignancy is frequently associated. However, little is known about the molecular mechanisms responsible for dysregulation of TGF alpha expression in the malignant phenotype. In this paper, we report on TGF alpha promoter regulation in the highly malignant growth factor-independent cell line HCT116. The HCT116 cell line expresses TGF alpha and the epidermal growth factor receptor (EGFR) but is not growth inhibited by antibodies to EGFR or TGF alpha. However, constitutive expression of TGF alpha antisense RNA in the HCT116 cell line resulted in the isolation of clones with markedly reduced TGF alpha mRNA and which were dependent on exogenous growth factors for proliferation. We hypothesized that if TGF alpha autocrine activation is the major stimulator of TGF alpha expression in this cell line, TGF alpha promoter activity should be reduced in the antisense TGF alpha clones in the absence of exogenous growth factor. This was the case. Moreover, transcriptional activation of the TGF alpha promoter was restored in an antisense-TGF alpha-mRNA-expressing clone which had reverted to a growth factor-independent phenotype. Using this model system, we were able to identify a 25-bp element within the TGF alpha promoter which conferred TGF alpha autoregulation to the TGF alpha promoter in the HCT116 cell line. In the TGF alpha-antisense-RNA-expressing clones, this element was activated by exogenous EGF. This 25-bp sequence contained no consensus sequences of known transcription factors so that the TGF alpha or EGF regulatory element within this 25-bp sequence represents a unique element. Further characterization of this 25-bp DNA sequence by deletion analysis revealed that regulation of TGF alpha promoter activity by this sequence is complex, as both repressors and activators bind in this region, but the overall expression of the activators is pivotal in determining the level of response to EGF or TGF alpha stimulation. The specific nuclear proteins binding to this region are also regulated in an autocrine-TGF alpha-dependent fashion and by exogenous EGF in EGF-deprived TGF alpha antisense clone 33. This regulation is identical to that seen in the growth factor-dependent cell line FET, which requires exogenous EGF for optimal growth. Moreover, the time response of the stimulation of trans-acting factor binding by EGF suggests that the effect is directly due to growth factor and not mediated by changes in growth state. We conclude that this element appears to represent the major positive regulator of TGF alpha expression in the growth factor-independent HCT116 cell line and may represent the major site of transcriptional dysregulation of TGF alpha promoter activity in the growth factor-independent phenotype.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.