Abstract

BackgroundOxaliplatin belongs to the platinum-based drug family and has shown promise in treating cancer by binding to DNA to induce cytotoxicity. However, individual patients show diverse therapeutic responses toward oxaliplatin due to yet-unknown underlying mechanisms. We recently established that oxaliplatin also exert its anti-cancer activity in gastric cancer cell lines by targeting tumor-associated NADH oxidase (tNOX), attenuate NAD+ generation and reduce NAD+-dependent sirtuin 1 (SIRT1) deacetylase activity, which in turn enhances p53 acetylation and apoptosis.MethodsIn this study, differential cellular outcomes in response to oxaliplatin exposure of p53-wild-type versus p53-null HCT116 human colon cancer cells were examined. Cell growth profile was determined by cell impedance measurements and apoptosis was analyzed by flow cytometry. The engagement between oxaliplatin and tNOX protein was studied by cellular thermal shift assay. Furthermore, western blot analysis revealed that p53 was important in regulating tNOX expression in these cell lines.ResultsIn p53-wild-type cells, we found that oxaliplatin inhibited cell growth by inducing apoptosis and concurrently down-regulating tNOX at both the transcriptional and translational levels. In p53-null cells, in contrast, oxaliplatin moderately up-regulated tNOX expression and yielded no apoptosis and much less cytotoxicity. Further experiments revealed that in p53-wild-type cells, oxaliplatin enhanced ROS generation and p53 transcriptional activation, leading to down-regulation of the transcriptional factor, POU3F2, which enhances the expression of tNOX. Moreover, the addition of a ROS scavenger reversed the p53 activation, POU3F2 down-regulation, and apoptosis induced by oxaliplatin in p53-wild-type cells. In the p53-null line, on the other hand, oxaliplatin treatment triggered less ROS generation and no p53 protein, such that POU3F2 and tNOX were not down-regulated and oxaliplatin-mediated cytotoxicity was attenuated.ConclusionOur results show that oxaliplatin mediates differential cellular responses in colon cancer cells depending on their p53 status, and demonstrate that the ROS-p53 axis is important for regulating POU3F2 and its downstream target, tNOX. Notably, the depletion of tNOX sensitizes p53-null cells to both spontaneous and oxaliplatin-induced apoptosis. Our work thus clearly shows a scenario in which targeting of tNOX may be a potential strategy for cancer therapy in a p53-inactivated system.

Highlights

  • Oxaliplatin belongs to the platinum-based drug family and has shown promise in treating cancer by binding to DNA to induce cytotoxicity

  • The ability of oxaliplatin to attenuate growth and induce apoptosis in colon cancer cells depend on the p53 status We utilized p53-wild-type and p53-null HCT116 cells to study whether the effect of oxaliplatin on colon cancer cells is dependent on the functionality of p53

  • This difference in cytotoxicity was reflected in the apoptotic populations of oxaliplatin-exposed cells: we observed marked increase in the apoptosis of p53-wild-type cells exposed to oxaliplatin in a dose- and time-dependent fashion, whereas minimal apoptosis was induced in p53-null cells exposed to the same doses of oxaliplatin (Fig. 1d)

Read more

Summary

Introduction

Oxaliplatin belongs to the platinum-based drug family and has shown promise in treating cancer by binding to DNA to induce cytotoxicity. The utilized drugs include, oxaliplatin, which belongs to the third generation of platinum-based compounds; these drugs bind and form DNA adducts that interfere with DNA replication to initiate DNA damage and apoptosis [2, 3]. The anti-cancer efficacy of oxaliplatin often hindered by tumor-related resistance, which is frequently associated with changes in cellular detoxification and transportation, DNA damage and repair, and cell death [4]. It is not surprising that p53, which is a functional tumor suppressor that plays paramount roles in regulating cell cycle progression, DNA repair, and apoptosis, is associated with the susceptibility of tumors to oxaliplatin-based therapy [5,6,7,8].

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call