Abstract

We have analyzed the relationship between expression of the transformed phenotype and thyroid hormone (triiodothyronine, T3) inducibility of Na,K-ATPase and binding of 125I-epidermal growth factor (EGF) to cell membrane receptors in wild-type (wt) and mutant type 5 adenovirus (Ad5)-transformed CREF cells displaying a cold-sensitive (cs) expression of the transformed phenotype. CREF cells respond to thyroid hormone treatment with increased Na,K-ATPase activity and bind similar levels of 125I-EGF at 32 degrees C, 37 degrees C and 39.5 degrees C. In contrast, CREF cells transformed by wt Ad5 or the E1a plus E1b-transforming genes of wt Ad5 are refractile to T3 treatment and bind lower levels of 125I-EGF than CREF cells at all three temperatures. By employing a series of cloned CREF cell lines transformed by a host-range cold-sensitive mutant virus, H5hr1 or H5dl101, or the E1a or E1a plus E1b genes from these viruses, we have investigated expression of the transformed state and its relationship with hormone inducibility and EGF binding. When cs virus, cs E1a- or cs E1a plus E1b-transformed CREF clones were grown at 32 degrees C, a nonpermissive transforming temperature in which cs-transformed cells exhibit properties similar to untransformed CREF cells, T3 induced Na,K-ATPase activity and these cells bound similar levels of 125I-EGF as CREF cells. However, when cs virus- and cs Ela plus E1b-transformed CREF clones were incubated at 37 degrees C or 39.5 degrees C, temperatures at which cs-transformed cells exhibit properties similar to wt Ad5-transformed CREF cells, they did not respond to T3 and bound lower levels of 125I-EGF than CREF cells. In the case of cs E1a-transformed CREF clones, thyroid hormone responsiveness was observed at both 32 degrees C and 37 degrees C, but not at 39.5 degrees C. By performing temperature shift experiments--i.e. 32 degrees C to 37 degrees C, 32 degrees C to 39.5 degrees C, 37 degrees C to 32 degrees C, and 39.5 degrees C to 32 degrees C, it was demonstrated that after a shift from lower to higher temperature a 24-hr lag period was required for cs-transformed CREF cells to lose T3 inducibility and exhibit reduced EGF binding, whereas 96 hr after a shift from higher to lower temperature a 96-hr lag period was required for cs-transformed cells to regain T3 inducibility and increased 125I-EGF binding.(ABSTRACT TRUNCATED AT 400 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.