Abstract

Transcriptional factor p53 is a master regulator of energy metabolism. Energy metabolism strongly depends on thiamine (vitamin B1) and/or its natural derivatives. Thiamine diphosphate (ThDP), which is a major thiamine derivative, affects p53 binding to DNA. In order to elucidate the mechanism of regulation of thiamine-dependent metabolism by p53, we assessed putative p53-binding sites near transcription starting points in genes coding for transporters and enzymes, whose function is associated with thiamine and/or its derivatives. The predictions were validated by studying cell metabolic response to the p53 inducer cisplatin. Expression of p53 and its known target, p21, has been evaluated in cisplatin-treated and control human lung adenocarcinoma A549 cells that possess functional p53 pathway. We also investigated the activity of enzymes involved in the thiamine-dependent energy metabolism. Along with upregulating the expression of p53 and p21, cisplatin affected the activities of metabolic enzymes, whose genes were predicted as carrying the p53-binding sites. The activity of glutamate dehydrogenase GDH2 isoenzyme strongly decreased, while the activities of NADP+-dependent isocitrate dehydrogenase (IDH) and malic enzymes, as well as the activity of 2-oxoglutarate dehydrogenase complex at its endogenous ThDP level, were elevated. Simultaneously, the activities of NAD+-dependent IDH, mitochondrial aspartate aminotransferase, and two malate dehydrogenase isoenzymes, whose genes were not predicted to have the p53-binding sequences near the transcription starting points, were upregulated by cisplatin. The p53-dependent regulation of the assayed metabolic enzymes correlated with induction of p21 by p53 rather than induction of p53 itself.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call