Abstract
The tumor immune microenvironment (TIME) is a dynamic and complex ecosystem consisting of immune cells, stromal cells, and tumor cells. It plays a crucial role in shaping cancer progression and treatment outcomes. Notably, tumor-associated immune cells are key regulators within the TIME, influencing immune responses and therapeutic efficacy. The Hippo pathway is a critical signaling pathway involved in the TIME and cancer progression. In this review, we provide an overview of the Hippo pathway's role in the TIME, focusing on its interactions with immune cells and their implications in cancer biology and therapy. Specifically, we discuss the involvement of the Hippo pathway in regulating T-cell function, macrophage polarization, B-cell differentiation, MDSC activity, and dendritic cell-mediated immune responses. Furthermore, we explore its influence on PD-L1 expression in lymphocytes and its potential as a therapeutic target. While recent progress has been made in understanding the Hippo pathway's molecular mechanisms, challenges remain in deciphering its context-dependent effects in different cancers and identifying predictive biomarkers for targeted therapies. By elucidating the intricate crosstalk between the Hippo pathway and the TME, we aim to contribute to the development of innovative strategies for cancer treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.