Abstract
Many agents that activate hematopoietic cells use phos pha tidyl ino si tol 3,4,5-trisphosphate (PtdIns 3,4,5-P(3)) to initiate signaling cascades. The SH2 domain-containing inositol 5' phosphatase, SHIP1, regulates hematopoietic cell function by opposing the action of phos pha tidyl ino si tol 3-kinase and reducing the levels of PtdIns 3,4,5-P(3). Activation of the cyclic AMP-de pend ent protein kinase (PKA) also opposes many of the pro-inflammatory responses of hematopoietic cells. We tested to see whether the activity of SHIP1 was regulated via phos pho ryl a tion with PKA. We prepared pure recombinant SHIP1 from HEK-293 cells and found it can be rapidly phos pho ryl a ted by PKA to a stoichiometry of 0.6 mol of PO(4)/mol of SHIP1. In (32)P-labeled HEK-293 cells transfected with SHIP1, stimulation with Sp-adenosine 3',5'-cyclic monophosphorothioate triethylammonium salt hydrate (Sp-cAMPS) or activation of the beta-adrenergic receptor increased the phos pho ryl a tion state of SHIP1. Inhibition of protein phosphatase activity with okadaic acid also increased the phos pho ryl a tion of SHIP1. Phosphorylation of SHIP1 in vitro or in cells by PKA increased the 5' phosphatase activity of SHIP1 by 2-3-fold. Elevation of Ca(2+) in DT40 cells in response to B cell receptor cross-linking, an indicator of PtdIns 3,4,5-P(3) levels, was markedly blunted by pretreatment with Sp-cAMPS. This effect was absent in SHIP(-/-) DT40 cells showing that the effect of Sp-cAMPS in DT40 cells is SHIP1-de pend ent. Sp-cAMPS also blunted the ability of the B cell receptor to increase the phos pho ryl a tion of Akt in DT40 and A20 cells. Overall, activation of G protein-coupled receptors that raise cyclic AMP cause SHIP1 to be phosphorylated and stimulate its inositol phosphatase activity. These results outline a novel mechanism of SHIP1 regulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.