Abstract

Voltage-dependent activation of slow vacuolar (SV) channels has been studied on isolated patches from red beet (Beta vulgaris L.) vacuoles. Isoosmotic variation of vacuolar K(+) from 10 to 400 mM in Ca(2+)-free solutions at the vacuolar side shifted the SV channel activation threshold to more positive voltages. The effect of K(+) could be mimicked by additions of choline or N-methyl D-glucamine and could be explained by unspecific screening of the negative surface charge. Fitting the dependence of voltage shift on K(+) concentration to the Gouy-Chapman model yields a surface charge density of 0.36 +/- 0.05 e(-)/nm(2). Negative surface potential also tended to increase the local concentration of permeable ions (K(+)), resulting in anomalously high single-channel conductance, approximately 200 pS in 10 mM KCl. An increase of ionic strength due to addition of impermeable cations greatly reduced the unitary conductance. Large positive shift of the SV channel voltage dependence, caused by physiological (0.5 mM) free vacuolar Ca(2+), was partly ameliorated by increasing luminal K(+). We interpreted these results as follows: K(+)induced a reduction of surface potential, hence i) causing a positive shift of the voltage dependence and ii) a dilution of Ca(2+) in the membrane vicinity, thus reducing the inhibitory effect of vacuolar Ca(2+) and causing a negative shift of the SV channel voltage dependence, with a sum of the two shifts being negative.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.