Abstract

The electron transfer reaction catalysed by mitochondrial ubiquinol:cytochrome c reductase is linked to the outwards translocation of protons with an H+ e- stoichiometry of 1 under non-membrane potential condition. The effect of the electrical membrane potential on the H+/e- stoichiometry was investigated. The enzyme was isolated from Neurospora crassa, reconstituted into phospholipid vesicles and electrical membrane potentials of various values were generated across the membranes by means of the valinomycin-induced potassium-diffusion method. Using lithium ions as counterions for the intravesicular potassium, the induced membrane potential was stable for minutes and was not significantly changed by the protons ejected by the working enzyme. This allowed the assay of steady-state reaction rates at pre-given values of electrical membrane potential. The rate ratio between electron transfer and proton translocation declined from 1 to 0.6 with increase of the membrane potential from 0 to 100 mV. The activity of the quinol/cytochrome c redox reaction followed a parabolic dependence, being activated by low (less than 50 mV) potential and inhibited by high (greater than 100 mV) potential. This apparent non-linear dependence was interpreted in terms of a linear flow/force relationship plus a membrane-potential-dependent slip. Evaluation of the parabolic course by means of a modified linear flow/force relation also indicated a decline of the H+/e- stoichiometry from 1 to 0.5 with increase of the membrane potential from 0 to 120 mV. These observations suggest that the membrane potential controls a change of ubiquinol:cytochrome c reductase between two states that have different reaction routes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.