Abstract

An increase in the concentration of intracellular free Ca2+ and in the phosphotyrosine content of specific proteins characterizes human sperm capacitation. Whether tyrosine phosphorylation regulates the intracellular free Ca2+ concentration through modulation of Ca2+-ATPase activity or the phosphotyrosine content is under Ca2+ regulation was investigated using Ca2+-ATPase modulators and tyrosine kinase inhibitors. The presence of the Ca2+-ATPase-inhibitor thapsigargin during human sperm capacitation caused an increase in the cytoplasmic free Ca2+ concentration and was associated with an increase in the phosphotyrosine content of specific sperm proteins. Conversely, a decrease in protein tyrosine phosphorylation was observed when gingerol, a Ca2+-ATPase activator, was present during the incubation period. On the other hand, thapsigargin had no effect on the phosphotyrosine content or the cytoplasmic Ca2+ concentration when spermatozoa were incubated in the presence of the phosphodiesterase-inhibitor 3-isobutyl-1-methylxanthine (IBMX). However, the effect of IBMX on phosphotyrosine-containing proteins appears to be a Ca2+-dependent phenomenon, because it was partly inhibited in spermatozoa pretreated with 1,2-bis-(o-aminophenoxy)-ethane-N,N,N,N-tetraacetic acid tetra-(acetoxymethyl)-ester (BAPTA-AM) even though, by itself, BAPTA-AM caused an increase in sperm protein phosphotyrosine content. Tyrosine kinase inhibitors prevented the increase in the phosphotyrosine content without affecting the cytoplasmic free Ca2+ concentration. Based on these findings, the present study suggests that Ca2+-ATPases are involved in the filling of internal Ca2+ stores, such as the acrosome, and are inhibited later during capacitation. Their inhibition allows an increase in cytoplasmic free Ca2+, which is involved in the subsequent increase in the phosphotyrosine content of specific sperm proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.