Abstract

Nitric oxide (NO) is a highly reactive gaseous molecule that regulates plant growth and development as well as defense responses. NO is mainly produced from nitrite by nitrate reductases (NRs) in balance with nitrite reductases (NiRs), and is sensed through a mechanism involving the N-end rule pathway-mediated proteolysis of the group VII of ERF transcription factors (ERFVIIs). NO especially exerts its signaling function by triggering post-translational modifications in proteins and altering their function, structure and/or stability. By these means and in collaboration with different phytohormone signaling pathways, NO is capable of regulating a wide array of cell processes in plants, including those related to the acquirement of freezing tolerance. By using Arabidopsis thaliana as model plant, during the development of this work it was found that NO can regulate its own biosynthesis, as NRs and NiR enzymes were regulated by three main factors: nitrate-induced signaling controlled by the function of the NIN-like protein 7 (NLP7) transcription factor, N-end rule proteolytic pathway, and proteasome-mediated degradation, likely triggered by NO-related post-translational modifications. In addition, the ERFVII transcription factor RAP2.3 was found to negatively regulate both the NO biosynthesis and their triggered responses through a rheostat-like mechanism that involves specific NO-related branches of jasmonate and abscisic acid signaling pathways. On the other hand, a combined metabolomic and transcriptomic characterization of NO-deficient nia1,2noa1-2 mutant plants and NO-fumigated plants allowed to unravel a number of mechanisms that are controlled by NO. First, NO perception in hypocotyls would require various hormones to be fulfilled as it was confirmed by NO-triggered hypocotyl shortening screenings with hormone-related mutants and the TRANSPLANTA collection of transgenic lines conditionally expressing Arabidopsis transcription factors. Second, high NO doses caused a massive but transient reprogramming of primary and secondary metabolism, including alteration of the cellular redox status, alteration of the permeability of lipidic structures or turnover of proteins and nucleic acids. Lastly, NO was found to prevent the development of freezing tolerance under non-stress temperature conditions, while being essential for the low temperature stress-triggered cold acclimation that leads to enhanced freezing tolerance. NO would achieve this fine-tuned modulation of the activation of the cold-related responses by coordinating the accumulation of different metabolites and hormones. Altogether, this work sheds light on the mechanisms by which, by interacting with various signaling and metabolic pathways, NO can regulate several key processes of plant physiology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.