Abstract

To improve the biocompatibility/biodegradability as well as to lower the cost of the popular glycosaminoglycan/collagen scaffold, a monocomponent's polysaccharide scaffold based on biomimetic chemical modification of chitin from lower organisms was developed creatively. O-Carboxymethyl chitin (O-CMCH) was prepared by chloroacetic acid substitution of alkalized chitin. The cross-linked O-CMCH soft tissue scaffold was constructed by a sol-gel freeze-drying method. The key parameters of the O-CMCH molecular structure, the degree of deacetylation (DD), and the degree of substitution (DS) were used to regulate the morphology and physical properties of the scaffold. The optimized scaffolds were implanted subcutaneously in mice, and the inflammation reaction of surrounding tissues, dermal tissue growth, and scaffold degradation were observed dynamically by light microscopy and scanning electron microscopy. The results showed that the micropores of the scaffold constructed by O-CMCH with DD = 0.53 and DS = 0.61 were uniformly distributed and in communication with each other, and the pore size was 100-150 μm, with high porosity (93.52 ± 4.68%), high swelling ratio (1402 ± 70%), and high skeleton cross-linking degree (93.4 ± 4.6%). Its tensile strength reached 0.183 ± 0.009 MPa, and its elongation at break was 18.7 ± 0.9%. Furthermore, it could be degraded to less than 10% after 16 days in phosphate buffer solution (pH = 7.4) with 0.2 mg/mL lysozymes (≥ 20 000 U/mg). The early inflammation after implanting the optimized scaffolds in mice showed no difference compared with the control. The scaffold material induced dermal tissues to grow over it and was degraded gradually in vivo. The optimized scaffold regulated by DD and DS of O-CMCH possessed suitable morphology and physical properties for soft tissue engineering technology and exhibited a high applicable value.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call