Abstract
Peroxisome proliferator-activated receptor (PPAR) gamma is activated by thiazolidinediones (TZDs), widely used as insulin-sensitizing agents for the treatment of type 2 diabetes. TZDs have been shown to induce apoptosis in a variety of mammalian cells. In vascular smooth muscle cells (VSMCs), proliferation and apoptosis may be competing processes during the formation of restenotic and atherosclerotic lesions. The precise molecular mechanisms by which TZDs induce apoptosis in VSMCs, however, remain unclear. In the present study, we demonstrate that the TZDs rosiglitazone (RSG), troglitazone (TRO), and a novel non-TZD partial PPARgamma agonist (nTZDpa) induce caspase-mediated apoptosis of human coronary VSMCs. Induction of VSMC apoptosis correlated closely with an upregulation of growth arrest and DNA damage-inducible gene 45 (GADD45) mRNA expression and transcription, a well-recognized modulator of cell cycle arrest and apoptosis. Using adenoviral-mediated overexpression of a constitutively active PPARgamma mutant and the irreversible PPARgamma antagonist GW9662, we provide evidence that PPARgamma ligands induce caspase-mediated apoptosis and GADD45 expression through a receptor-dependent pathway. Deletion analysis of the GADD45 promoter revealed that a 153-bp region between -234 and -81 bp proximal to the transcription start site, containing an Oct-1 element, was crucial for the PPARgamma ligand-mediated induction of the GADD45 promoter. PPARgamma activation induced Oct-1 protein expression and DNA binding and stimulated activity of a reporter plasmid driven by multiple Oct-1 elements. These findings suggest that activation of PPARgamma can lead to apoptosis and growth arrest in VSMCs, at least in part, by inducing Oct-1-mediated transcription of GADD45. The full text of this article is available online at http://www.circresaha.org.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.