Abstract

FSH is a critical hormone regulator of gonadal function that is secreted from the pituitary gonadotrope cell. Human patients and animal models with mutations in the LHX3 LIM-homeodomain transcription factor gene exhibit complex endocrine diseases, including reproductive disorders with loss of FSH. We demonstrate that in both heterologous and pituitary gonadotrope cells, specific LHX3 isoforms activate the FSH beta-subunit promoter, but not the proximal LHbeta promoter. The related LHX4 mammalian transcription factor can also induce FSHbeta promoter transcription, but the homologous Drosophila protein LIM3 cannot. The actions of LHX3 are specifically blocked by a dominant negative LHX3 protein containing a Kruppel-associated box domain. Six LHX3-binding sites were characterized within the FSHbeta promoter, including three within a proximal region that also mediates gene regulation by other transcription factors and activin. Mutations of the proximal binding sites demonstrate their importance for LHX3 induction of the FSHbeta promoter and basal promoter activity in gonadotrope cells. Using quantitative methods, we show that the responses of the FSHbeta promoter to activin do not require induction of the LHX3 gene. By comparative genomics using the human FSHbeta promoter, we demonstrate structural and functional conservation of promoter induction by LHX3. We conclude that the LHX3 LIM homeodomain transcription factor is involved in activation of the FSH beta-subunit gene in the pituitary gonadotrope cell.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.