Abstract

The combination of theoretical calculations and experimental synthesis provides valuable insights into the performance of FexNiyO4 as a catalyst for ammonia (NH3) synthesis through the electrocatalytic nitrate reduction reaction (eNO3−RR). Here, an observation of a volcano-shaped trend in the theoretical calculations reveals that the catalytic activity of FexNiyO4 for NH3 synthesis varies with the Fe/Ni ratio. The subsequent experimental syntheses of FexNiyO4 with different Fe/Ni ratios validate this trend and demonstrate the morphological changes associated with the varying Fe/Ni ratios. The evolution of the FexNiyO4 morphology from nanosheets to sea urchin-like structures, nanowires and nanoflowers composed of rotated nanosheets as the Fe/Ni ratio increases further supports the influence of the composition on the resulting morphology. This morphological diversity can be attributed to the specific growth conditions and self-assembly processes involved in the synthesis. The correlation between the Fe/Ni ratio, morphology and NH3 yield reinforces the theoretical calculations. The observed volcanic trend in the NH3 yield, consistent with the theoretical predictions, indicates that there is an optimal Fe/Ni ratio (Fe2NiO4) with the highest NH3 yield of 12.51 mg h−1 cm−2 at −1.1 V. The excellent Faradaic efficiency of 95.97 % in neutral solution further highlights the suitability of Fe2NiO4 as a catalyst for NH3 synthesis through eNO3−RR. Moreover, the remarkable stability of FexNiyO4, regardless of the Fe/Ni ratio, is an important finding. The consistent performance of FexNiyO4 indicates its potential for long-term and practical applications in NH3 synthesis. Furthermore, the observed morphological changes, volcano-shaped trend in the NH3 yield and remarkable stability of FexNiyO4 highlight its potential as a promising catalyst.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call