Abstract
For over a decade, the enhancement of regulated exocytosis by cAMP-dependent protein kinase (PKA) has remained unexplained at the molecular level. The fact that this phenomenon has been observed in such a wide variety of secretory cell types, from pancreatic beta-cells to neurons, suggests that it is an important and fundamental mechanism. Extensive analysis of the phosphorylation of exocytotic proteins has yielded few substrates of PKA in vitro, and fewer still have had physiological effects attributed to their phosphorylation. Here we review two proteins that do fulfil these criteria: the synaptic vesicle proteins cysteine string protein (CSP) and Snapin. Phosphorylation of these proteins by PKA produces changes in their respective protein-protein interactions, and has been attributed to modulation of the vesicle priming (Snapin) and vesicle fusion (CSP) stages of exocytosis. We also discuss how the function of CSP and Snapin phosphorylation might fit into an interesting aspect of the PKA-dependent enhancement of exocytosis: presynaptic plasticity in the brain.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.