Abstract
The retinoblastoma gene product (Rb) is a nuclear phosphoprotein that regulates cell cycle progression. Elf-1 is a lymphoid-specific Ets transcription factor that regulates inducible gene expression during T cell activation. In this report, it is demonstrated that Elf-1 contains a sequence motif that is highly related to the Rb binding sites of several viral oncoproteins and binds to the pocket region of Rb both in vitro and in vivo. Elf-1 binds exclusively to the underphosphorylated form of Rb and fails to bind to Rb mutants derived from patients with retinoblastoma. Co-immunoprecipitation experiments demonstrated an association between Elf-1 and Rb in resting normal human T cells. After T cell activation, the phosphorylation of Rb results in the release of Elf-1, which is correlated temporally with the activation of Elf-1-mediated transcription. Overexpression of a phosphorylation-defective form of Rb inhibited Elf-1-dependent transcription during T cell activation. These results demonstrate that Rb interacts specifically with a lineage-restricted Ets transcription factor. This regulated interaction may be important for the coordination of lineage-specific effector functions such as lymphokine production with cell cycle progression in activated T cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.