Abstract

Four mutant calmodulins with site-specific charge alterations have been used to activate the human erythrocyte Ca2(+)-ATPase. These charge alterations were accomplished either by insertion of new Lys residues or by substitution of Lys residues for Glu in two of the seven calmodulin alpha-helices. Two enzyme preparations, purified monomeric Ca2(+)-ATPase and erythrocyte ghost membranes, were used with comparable results. At 100 nM Ca2+, the Ca2(+)-ATPase activity was lowered significantly by charge reversal from negative to positive in both the central alpha-helix and the carboxy-terminal domain. While all mutant calmodulins with charge reversal ultimately stimulated the Ca2(+)-ATPase activity to the same extent, the concentration of mutant calmodulin required for half-maximal activation was from 36-fold (central alpha-helix) to 126-fold higher (alpha-helix in the carboxy-terminal domain) than that of the control calmodulin. There was also a significant difference in the stimulation of Ca2(+)-ATPase activity by the different mutant calmodulins as a function of Ca2+ concentration, being most pronounced at submicromolar Ca2+ concentrations where enzyme activation by calmodulin appears to be a physiologically relevant mechanism. In contrast to the mutant calmodulins with charge reversal, mutant calmodulins in which two positive charges were added in the central alpha-helix activated the Ca2(+)-ATPase in a way undistinguishable from the control calmodulin.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.