Abstract

Introduction: Oxidative stress and inflammation are major factors contributing to the progressive death of dopaminergic neurons in Parkinson’s disease (PD). Recent studies have demonstrated that morphine’s biosynthetic pathway, coupled with nitric oxide (NO) release, is evolutionarily conserved throughout animals and humans. Moreover, dopamine is a key precursor for morphine biosynthesis. Method: The present study evaluated a series of preclinical experiments to evaluate the effects of low-level morphine treatment upon neuro-immune tissues exposed to rotenone and 6-OHDA as models of PD, followed by an 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide cell proliferation assay and cell/tissue computer-assisted imaging analyses to assess cell/neuronal viability. Results: Morphine at normal physiological concentrations (i.e., 10−6 M and 10−7 M) provided neuroprotection, as it significantly inhibited rotenone and 6-OHDA dopaminergic insults; thereby, reducing and/or forestalling cell death in invertebrate ganglia and human nerve cells. To ensure that morphine caused this neuroprotective effect, naloxone, a potent opiate receptor antagonist, was employed and the results showed that it blocked morphine’s neuroprotective effects. Additionally, co-incubation of NO synthase inhibitor L-NAME also blocked morphine’s neuroprotective effects against rotenone and 6-OHDA insults. Conclusions: Taken together, the present preclinical study showed that while morphine can attenuate lipopolysaccharide-induced inflammation and cell death, both naloxone and L-NAME can abolish this effect. Preincubation of morphine precursors (i.e., L-3,4-dihydroxyphenylalanine, reticuline, and trihexyphenidyl [THP] at physiological concentrations) mimics the observed morphine effect. However, high concentrations of THP, a precursor of the morphine biosynthetic pathway, induced cell death, indicating the physiological importance of morphine biosynthesis in neural tissues. Thus, understanding the morphine biosynthetic pathway coupled with a NO signaling mechanism as a molecular target for neuroprotection against oxidative stress and inflammation in other preclinical models of PD is warranted.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call