Abstract
The chondroitin/dermatan sulfate proteoglycans (CS/DSPGs), biglycan, decorin, and versican play several important roles in extracellular matrix influencing matrix organization, cell proliferation, and recruitment. Moreover, they bind and regulate growth factors in the extracellular matrix. We have previously shown that cultured human lung fibroblasts treated with transforming growth factor-beta (TGF-beta) alone or in combination with epidermal growth factor and platelet-derived growth factor, increase the production of these PGs. In this report, we describe that the structure of their galactosaminoglycan side chains is altered, albeit there is no alteration of polysaccharide length. The findings showed that iduronic acid content is reduced by 50% in decorin and biglycan, whereas 4-O-sulfation is increased 2-fold in versican. To unravel the mechanism behind these changes, the activities of chondroitin C-5 epimerase and of O-sulfotransferases in cellular fractions prepared from fibroblasts were quantitated, and transcript levels of the relevant sulfotransferases were measured by real time polymerase chain reaction (RT-PCR). The C-5 epimerase activity was reduced by 25% in TGF-beta1 treated cells and 50% in fibroblasts treated with the growth factor combination. No change in activity in dermatan 4-O sulfotransferase was observed, and only a minor decrease in dermatan 4-O-sulfotransferase-1 (D4ST-1) mRNA was observed. On the other hand, chondroitin 4-O sulfotransferase activity increased 2-fold upon TGF-beta1 treatment and 3-fold upon treatment with the growth factor combination. This is in agreement with a 2-fold up-regulation of chondroitin-4-O-sulfotransferase 1 (C4ST-1) mRNA, and no changes in chondroitin-4-O-sulfotransferase 2 (C4ST-2) mRNA. Thus, cellular activity and transcript level correlated well with the changes in the structure of the dermatan/chondroitin sulfate chains.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.