Abstract

Cell cycle control is regulated through the temporal action of both cyclin-dependent kinases and cyclin binding partners. Previously, we have demonstrated that low doses of oligomycin result in a cell cycle arrest of HL-60 cells in G 1 [S. Sweet, G. Singh, Accumulation of human promyelocytic leukemic (HL-60) cells at two energetic cell cycle checkpoints, Cancer Res. 55 (1995) 5164–5167]. In this study, we provide the molecular mechanisms for the observed G 1 arrest following mitochondrial ATPase inhibition. Protein expression of cyclin E and CDK2, the kinase activity of complexed cyclin E/CDK2, and protein expression of p16, p21, and p27 were all unaffected by oligomycin administration. While CDK4 levels were unchanged following oligomycin treatment, a dramatic reduction in cyclin D 1 was observed. Moreover, increased amounts of hypo-phosphorylated retinoblastoma protein (Rbp) and Rbp bound E2F were observed following mitochondrial ATP synthase inhibition. These data provide further evidence that surveillance of available energy occurs during G 1 and ATP deprivation results in cell cycle arrest via a reduction in cyclin D.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.