Abstract
12-O-Tetradecanoyl phorbol-13-acetate (TPA) inhibits the growth of most malignant melanoma cells but stimulates the growth of normal human melanocytes. We previously showed that addition of TPA inhibits the growth of the human metastatic melanoma cell line, Demel, by blocking cells at both the G1/S and G2/M cell cycle transitions (D. L. Coppocket al.,1992,Cell Growth Differ.3, 485–494). To examine the G2/M transition, we developed a method to synchronize the cells in early S phase using Lovastatin and mevalonate, followed by treatment with hydroxyurea (HU). TPA (30 nM) was effective in blocking cells from entering mitosis and reentering G1 when added up to the end of G2. These cells arrested in G2. Examination of the levels of cyclins A and B1 demonstrated that the levels of these cyclins were not limiting for entrance into M. However, the addition of TPA blocked the increase in p34cdc2/cyclin B1 kinase activity. In cells treated with TPA, most p34cdc2was found in the slowly migrating forms on Western blots, which contained increased levels of phosphotyrosine. In addition, the level of the cyclin-dependent kinase inhibitor p21Cip1/Waf1, but not of p27Kip1, was increased. We examined the expression of protein kinase C (PKC) isoforms in Demel cells using Western blots to understand which types were involved in the G2 arrest. Demel cells expressed the PKC α, βI, βII, δ, ϵ, ι/λ, ζ, and μ isozymes. PKC η and PKC θ were not detected. Addition of TPA did not completely down regulate any PKC isozymes over a 12-h period in these synchronized cells. PKC α, βI, βII, δ, and ϵ isozymes were translocated to the membrane fraction from the cytosolic fraction when treated with TPA. PKC δ appeared as a doublet and the addition of TPA shifted a majority to the slower migrating form. The level of PKC μ was constant; however, a slow mobility form was observed in TPA-treated cells. This reduced mobility was at least partially due to phosphorylation. Thus, the arrest of growth in G2 appears to be due to the inhibition of the p34cdc2kinase activity which is associated with the increased expression of p21Cip1/Waf1and increased phosphorylation on tyrosine of p34cdc2. This arrest, in turn, is associated with a shift of PKC isozymes PKC α, PKC βI, PKC βII, PKC δ, PKC ϵ, and PKC μ to the membrane fraction which is induced by addition of TPA.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.