Abstract

The antioncogenic Chk2 kinase plays a crucial role in DNA damage-induced cell-cycle checkpoint regulation. Here we show that Chk2 associates with the oncogenic protein Wip1 (wild-type p53-inducible phosphatase 1) (PPM1D), a p53-inducible protein phosphatase. Phosphorylation of Chk2 at threonine68 (Thr68), a critical event for Chk2 activation, which is normally induced by DNA damage or overexpression of Chk2, is inhibited by expression of wild-type (WT), but not a phosphatase-deficient mutant (D314A) of Wip1 in cultured cells. Furthermore, an in vitro phosphatase assay revealed that Wip1 (WT), but not Wip1 (D314A), dephosphorylates Thr68 on phosphorylated Chk2 in vitro, resulting in the inhibition of Chk2 kinase activity toward glutathione S-transferase-Cdc25C. Moreover, inhibition of Wip1 expression by RNA interference results in abnormally sustained Thr68 phosphorylation of Chk2 and increased susceptibility of cells in response to DNA damage, indicating that Wip1 acts as a negative regulator of Chk2 in response to DNA damage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call